Interaction ID
ncRI-40986793
Interaction Molecules
Malat1 -- Hnrnpu
Interaction Level
RNA-RNA
Interaction Class
binding
Data Source
RISE database
Tags
Organism
Mus musculus
Tissue or Cell Type
mES
Experiment
RAP
Description
RNA-RNA interaction from RISE database
Alias
-
Class
mRNA
Ensembl id
ENSMUSG00000039630
Description
DNA- and RNA-binding protein involved in several cellular processes such as nuclear chromatin organization, telomere-length regulation, transcription, mRNA alternative splicing and stability, Xist-mediated transcriptional silencing and mitotic cell progression (PubMed:20833368, PubMed:21235343, PubMed:22162999, PubMed:26244333). Plays a role in the regulation of interphase large-scale gene-rich chromatin organization through chromatin-associated RNAs (caRNAs) in a transcription-dependent manner, and thereby maintains genomic stability (By similarity). Required for the localization of the long non-coding Xist RNA on the inactive chromosome X (Xi) and the subsequent initiation and maintenance of X-linked transcriptional gene silencing during X- inactivation (PubMed:20833368, PubMed:26244333). Plays a role as a RNA polymerase II (Pol II) holoenzyme transcription regulator (PubMed:21235343, PubMed:22162999). Promotes transcription initiation by direct association with the core-TFIIH basal transcription factor complex for the assembly of a functional pre- initiation complex with Pol II in a actin-dependent manner. Blocks Pol II transcription elongation activity by inhibiting the C- terminal domain (CTD) phosphorylation of Pol II and dissociates from Pol II pre-initiation complex prior to productive transcription elongation. Positively regulates CBX5-induced transcriptional gene silencing and retention of CBX5 in the nucleus. Negatively regulates glucocorticoid-mediated transcriptional activation (By similarity). Key regulator of transcription initiation and elongation in embryonic stem cells upon leukemia inhibitory factor (LIF) signaling (PubMed:21235343). Involved in the long non-coding RNA H19-mediated Pol II transcriptional repression (By similarity). Participates in the circadian regulation of the core clock component ARNTL/BMAL1 transcription (PubMed:18332112). Plays a role in the regulation of telomere length. Plays a role as a global pre-mRNA alternative splicing modulator by regulating U2 small nuclear ribonucleoprotein (snRNP) biogenesis. Plays a role in mRNA stability. Component of the CRD-mediated complex that promotes MYC mRNA stabilization. Enhances the expression of specific genes, such as tumor necrosis factor TNFA, by regulating mRNA stability, possibly through binding to the 3'-untranslated region (UTR). Plays a role in mitotic cell cycle regulation. Involved in the formation of stable mitotic spindle microtubules (MTs) attachment to kinetochore, spindle organization and chromosome congression. Phosphorylation at Ser-58 by PLK1 is required for chromosome alignement and segregation and progression through mitosis. Contributes also to the targeting of AURKA to mitotic spindle MTs. Binds to double- and single-stranded DNA and RNA, poly(A), poly(C) and poly(G) oligoribonucleotides. Binds to chromatin-associated RNAs (caRNAs). Associates with chromatin to scaffold/matrix attachment region (S/MAR) elements in a chromatin-associated RNAs (caRNAs)-dependent manner (By similarity). Binds (via RNA-binding RGG-box region) to the long non-coding Xist RNA; this binding is direct and bridges the Xist RNA and the inactive chromosome X (Xi) (PubMed:20833368, PubMed:26244333). Binds the long non-coding H19 RNA. Binds to SMN1/2 pre-mRNAs at G/U-rich regions. Binds to small nuclear RNAs (snRNAs). Binds to the 3'-UTR of TNFA mRNA (By similarity). Also negatively regulates embryonic stem cell differentiation upon LIF signaling (PubMed:21235343). Required for embryonic development (PubMed:16022389). Binds to brown fat long non-coding RNA 1 (Blnc1); facilitates the recruitment of Blnc1 by ZBTB7B required to drive brown and beige fat development and thermogenesis (PubMed:28784777).
Pubmed ID | 27180905 | Journal | Cell |
---|---|---|---|
Title | RNA Duplex Map in Living Cells Reveals Higher-Order Transcriptome Structure. | ||
Author | Lu Z, Zhang QC, Lee B, Flynn RA, Smith MA, Robinson JT, Davidovich C, Gooding AR, Goodrich KJ, Mattick JS, Mesirov JP, Cech TR, Chang HY |
Molecule | Disease | Data Source |
---|---|---|
Malat1 | diabetes mellitus | LncRNADisease Database |
Malat1 | renal fibrosis | MNDR Database |